📈
ucore-analysis
  • Introduction
  • lab1
    • boot
      • bootasm
      • bootmain
    • kern
      • debug
        • kmonitor
        • panic
      • init
        • init
      • libs
        • readline
      • mm
        • pmm
      • trap
        • trap
        • trapentry
        • vectors
    • libs
    • tools
  • lab解析
    • lab1
      • 练习1
      • 练习2
      • 练习3
      • 练习4
      • 练习6
      • 扩展练习
      • Piazza优质问题/笔记收集
    • lab2
      • 练习1
      • 练习2
      • 练习3
    • lab3
    • lab4
    • lab5
    • lab6
    • lab7
    • lab8
  • uCore代码
    • boot
      • asm.h
      • bootasm.S
      • bootmain.c
      • (lab1) bootasm.S
    • kern
      • debug
        • assert.h
        • kdebug.c
        • kdebug.h
        • kmonitor.c
        • kmonitor.h
        • panic.c
        • stab.h
        • (lab1) kdebug.c
      • driver
        • clock.c
        • clock.h
        • console.c
        • console.h
        • ide.c
        • ide.h
        • intr.c
        • intr.h
        • kbdreg.h
        • picirq.c
        • picirq.h
      • fs
        • devs
          • dev.c
          • dev_disk0.c
          • dev.h
          • dev_stdin.c
          • dev_stdout.c
        • sfs
          • bitmap.c
          • bitmap.h
          • sfs.c
          • sfs_fs.c
          • sfs.h
          • sfs_inode.c
          • sfs_io.c
          • sfs_lock.c
        • swap
          • swapfs.c
          • swapfs.h
        • vfs
          • inode.c
          • inode.h
          • README.md
          • vfs.c
          • vfsdev.c
          • vfsfile.c
          • vfs.h
          • vfslookup.c
          • vfspath.c
        • file.c
        • file.h
        • fs.c
        • fs.h
        • iobuf.c
        • iobuf.h
        • sysfile.c
        • sysfile.h
      • init
        • entry.S
        • init.c
        • (lab1) init.c
      • libs
        • readline.c
        • stdio.c
        • string.c
      • mm
        • default_pmm.c
        • default_pmm.h
        • kmalloc.c
        • kmalloc.h
        • memlayout.h
        • mmu.h
        • pmm.c
        • pmm.h
        • swap.c
        • swap_fifo.c
        • swap_fifo.h
        • swap.h
        • vmm.c
        • vmm.h
        • (lab2) pmm.c
        • (lab3) vmm.c
      • process
        • entry.S
        • proc.c
        • proc.h
        • switch.S
        • (lab4) proc.c
        • (lab5) proc.c
      • schedule
        • default_sched.c
        • default_sched.h
        • default_sched_stride.c
        • sched.c
        • sched.h
      • sync
        • check_sync.c
        • monitor.c
        • monitor.h
        • sem.c
        • sem.h
        • sync.h
        • wait.c
        • wait.h
      • syscall
        • syscall.c
        • syscall.h
      • trap
        • trap.c
        • trapentry.S
        • trap.h
        • vectors.S
        • (lab1) trap.c
    • libs
      • atomic.h
      • defs.h
      • dirent.h
      • elf.h
      • error.h
      • hash.c
      • list.h
      • printfmt.c
      • rand.c
      • skew_heap.h
      • stat.h
      • stdarg.h
      • stdio.h
      • stdlib.h
      • string.c
      • string.h
      • unistd.h
      • x86.h
    • tools
      • boot.ld
      • function.mk
      • gdbinit
      • grade.sh
      • kernel.ld
      • mksfs.c
      • sign.c
      • user.ld
      • vector.c
    • user
      • libs
        • dir.c
        • dir.h
        • file.c
        • file.h
        • initcode.S
        • lock.h
        • panic.c
        • stdio.c
        • syscall.c
        • syscall.h
        • ulib.c
        • ulib.h
        • umain.c
      • badarg.c
      • badsegment.c
      • divzero.c
      • exit.c
      • faultread.c
      • faultreadkernel.c
      • forktest.c
      • forktree.c
      • hello.c
      • ls.c
      • matrix.c
      • pgdir.c
      • priority.c
      • sfs_filetest1.c
      • sh.c
      • sleep.c
      • sleepkill.c
      • softint.c
      • spin.c
      • testbss.c
      • waitkill.c
      • yield.c
    • Makefile
    • (lab1) Makefile
  • 附录:工具使用
    • 如何编辑该文档
    • 讨论区的维护方法
    • 使用Travis CI自动化更新gitbook
Powered by GitBook
On this page

Was this helpful?

  1. uCore代码
  2. kern
  3. mm

kmalloc.c

#include <defs.h>
#include <list.h>
#include <memlayout.h>
#include <assert.h>
#include <kmalloc.h>
#include <sync.h>
#include <pmm.h>
#include <stdio.h>

/*
 * SLOB Allocator: Simple List Of Blocks
 *
 * Matt Mackall <mpm@selenic.com> 12/30/03
 *
 * How SLOB works:
 *
 * The core of SLOB is a traditional K&R style heap allocator, with
 * support for returning aligned objects. The granularity of this
 * allocator is 8 bytes on x86, though it's perhaps possible to reduce
 * this to 4 if it's deemed worth the effort. The slob heap is a
 * singly-linked list of pages from __get_free_page, grown on demand
 * and allocation from the heap is currently first-fit.
 *
 * Above this is an implementation of kmalloc/kfree. Blocks returned
 * from kmalloc are 8-byte aligned and prepended with a 8-byte header.
 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
 * __get_free_pages directly so that it can return page-aligned blocks
 * and keeps a linked list of such pages and their orders. These
 * objects are detected in kfree() by their page alignment.
 *
 * SLAB is emulated on top of SLOB by simply calling constructors and
 * destructors for every SLAB allocation. Objects are returned with
 * the 8-byte alignment unless the SLAB_MUST_HWCACHE_ALIGN flag is
 * set, in which case the low-level allocator will fragment blocks to
 * create the proper alignment. Again, objects of page-size or greater
 * are allocated by calling __get_free_pages. As SLAB objects know
 * their size, no separate size bookkeeping is necessary and there is
 * essentially no allocation space overhead.
 */


//some helper
#define spin_lock_irqsave(l, f) local_intr_save(f)
#define spin_unlock_irqrestore(l, f) local_intr_restore(f)
typedef unsigned int gfp_t;
#ifndef PAGE_SIZE
#define PAGE_SIZE PGSIZE
#endif

#ifndef L1_CACHE_BYTES
#define L1_CACHE_BYTES 64
#endif

#ifndef ALIGN
#define ALIGN(addr,size)   (((addr)+(size)-1)&(~((size)-1))) 
#endif


struct slob_block {
    int units;
    struct slob_block *next;
};
typedef struct slob_block slob_t;

#define SLOB_UNIT sizeof(slob_t)
#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
#define SLOB_ALIGN L1_CACHE_BYTES

struct bigblock {
    int order;
    void *pages;
    struct bigblock *next;
};
typedef struct bigblock bigblock_t;

static slob_t arena = { .next = &arena, .units = 1 };
static slob_t *slobfree = &arena;
static bigblock_t *bigblocks;


static void* __slob_get_free_pages(gfp_t gfp, int order)
{
  struct Page * page = alloc_pages(1 << order);
  if(!page)
    return NULL;
  return page2kva(page);
}

#define __slob_get_free_page(gfp) __slob_get_free_pages(gfp, 0)

static inline void __slob_free_pages(unsigned long kva, int order)
{
  free_pages(kva2page(kva), 1 << order);
}

static void slob_free(void *b, int size);

static void *slob_alloc(size_t size, gfp_t gfp, int align)
{
  assert( (size + SLOB_UNIT) < PAGE_SIZE );

    slob_t *prev, *cur, *aligned = 0;
    int delta = 0, units = SLOB_UNITS(size);
    unsigned long flags;

    spin_lock_irqsave(&slob_lock, flags);
    prev = slobfree;
    for (cur = prev->next; ; prev = cur, cur = cur->next) {
        if (align) {
            aligned = (slob_t *)ALIGN((unsigned long)cur, align);
            delta = aligned - cur;
        }
        if (cur->units >= units + delta) { /* room enough? */
            if (delta) { /* need to fragment head to align? */
                aligned->units = cur->units - delta;
                aligned->next = cur->next;
                cur->next = aligned;
                cur->units = delta;
                prev = cur;
                cur = aligned;
            }

            if (cur->units == units) /* exact fit? */
                prev->next = cur->next; /* unlink */
            else { /* fragment */
                prev->next = cur + units;
                prev->next->units = cur->units - units;
                prev->next->next = cur->next;
                cur->units = units;
            }

            slobfree = prev;
            spin_unlock_irqrestore(&slob_lock, flags);
            return cur;
        }
        if (cur == slobfree) {
            spin_unlock_irqrestore(&slob_lock, flags);

            if (size == PAGE_SIZE) /* trying to shrink arena? */
                return 0;

            cur = (slob_t *)__slob_get_free_page(gfp);
            if (!cur)
                return 0;

            slob_free(cur, PAGE_SIZE);
            spin_lock_irqsave(&slob_lock, flags);
            cur = slobfree;
        }
    }
}

static void slob_free(void *block, int size)
{
    slob_t *cur, *b = (slob_t *)block;
    unsigned long flags;

    if (!block)
        return;

    if (size)
        b->units = SLOB_UNITS(size);

    /* Find reinsertion point */
    spin_lock_irqsave(&slob_lock, flags);
    for (cur = slobfree; !(b > cur && b < cur->next); cur = cur->next)
        if (cur >= cur->next && (b > cur || b < cur->next))
            break;

    if (b + b->units == cur->next) {
        b->units += cur->next->units;
        b->next = cur->next->next;
    } else
        b->next = cur->next;

    if (cur + cur->units == b) {
        cur->units += b->units;
        cur->next = b->next;
    } else
        cur->next = b;

    slobfree = cur;

    spin_unlock_irqrestore(&slob_lock, flags);
}



void check_slab(void) {
  cprintf("check_slab() success\n");
}

void
slab_init(void) {
  cprintf("use SLOB allocator\n");
  check_slab();
}

inline void 
kmalloc_init(void) {
    slab_init();
    cprintf("kmalloc_init() succeeded!\n");
}

size_t
slab_allocated(void) {
  return 0;
}

size_t
kallocated(void) {
   return slab_allocated();
}

static int find_order(int size)
{
    int order = 0;
    for ( ; size > 4096 ; size >>=1)
        order++;
    return order;
}

static void *__kmalloc(size_t size, gfp_t gfp)
{
    slob_t *m;
    bigblock_t *bb;
    unsigned long flags;

    if (size < PAGE_SIZE - SLOB_UNIT) {
        m = slob_alloc(size + SLOB_UNIT, gfp, 0);
        return m ? (void *)(m + 1) : 0;
    }

    bb = slob_alloc(sizeof(bigblock_t), gfp, 0);
    if (!bb)
        return 0;

    bb->order = find_order(size);
    bb->pages = (void *)__slob_get_free_pages(gfp, bb->order);

    if (bb->pages) {
        spin_lock_irqsave(&block_lock, flags);
        bb->next = bigblocks;
        bigblocks = bb;
        spin_unlock_irqrestore(&block_lock, flags);
        return bb->pages;
    }

    slob_free(bb, sizeof(bigblock_t));
    return 0;
}

void *
kmalloc(size_t size)
{
  return __kmalloc(size, 0);
}


void kfree(void *block)
{
    bigblock_t *bb, **last = &bigblocks;
    unsigned long flags;

    if (!block)
        return;

    if (!((unsigned long)block & (PAGE_SIZE-1))) {
        /* might be on the big block list */
        spin_lock_irqsave(&block_lock, flags);
        for (bb = bigblocks; bb; last = &bb->next, bb = bb->next) {
            if (bb->pages == block) {
                *last = bb->next;
                spin_unlock_irqrestore(&block_lock, flags);
                __slob_free_pages((unsigned long)block, bb->order);
                slob_free(bb, sizeof(bigblock_t));
                return;
            }
        }
        spin_unlock_irqrestore(&block_lock, flags);
    }

    slob_free((slob_t *)block - 1, 0);
    return;
}


unsigned int ksize(const void *block)
{
    bigblock_t *bb;
    unsigned long flags;

    if (!block)
        return 0;

    if (!((unsigned long)block & (PAGE_SIZE-1))) {
        spin_lock_irqsave(&block_lock, flags);
        for (bb = bigblocks; bb; bb = bb->next)
            if (bb->pages == block) {
                spin_unlock_irqrestore(&slob_lock, flags);
                return PAGE_SIZE << bb->order;
            }
        spin_unlock_irqrestore(&block_lock, flags);
    }

    return ((slob_t *)block - 1)->units * SLOB_UNIT;
}
Previousdefault_pmm.hNextkmalloc.h

Last updated 5 years ago

Was this helpful?