Last updated
Last updated
#ifndef __KERN_MM_PMM_H__
#define __KERN_MM_PMM_H__
#include <defs.h>
#include <mmu.h>
#include <memlayout.h>
#include <atomic.h>
#include <assert.h>
// pmm_manager is a physical memory management class. A special pmm manager - XXX_pmm_manager
// only needs to implement the methods in pmm_manager class, then XXX_pmm_manager can be used
// by ucore to manage the total physical memory space.
struct pmm_manager {
const char *name; // XXX_pmm_manager's name
void (*init)(void); // initialize internal description&management data structure
// (free block list, number of free block) of XXX_pmm_manager
void (*init_memmap)(struct Page *base, size_t n); // setup description&management data structcure according to
// the initial free physical memory space
struct Page *(*alloc_pages)(size_t n); // allocate >=n pages, depend on the allocation algorithm
void (*free_pages)(struct Page *base, size_t n); // free >=n pages with "base" addr of Page descriptor structures(memlayout.h)
size_t (*nr_free_pages)(void); // return the number of free pages
void (*check)(void); // check the correctness of XXX_pmm_manager
};
extern const struct pmm_manager *pmm_manager;
extern pde_t *boot_pgdir;
extern uintptr_t boot_cr3;
void pmm_init(void);
struct Page *alloc_pages(size_t n);
void free_pages(struct Page *base, size_t n);
size_t nr_free_pages(void);
#define alloc_page() alloc_pages(1)
#define free_page(page) free_pages(page, 1)
pte_t *get_pte(pde_t *pgdir, uintptr_t la, bool create);
struct Page *get_page(pde_t *pgdir, uintptr_t la, pte_t **ptep_store);
void page_remove(pde_t *pgdir, uintptr_t la);
int page_insert(pde_t *pgdir, struct Page *page, uintptr_t la, uint32_t perm);
void load_esp0(uintptr_t esp0);
void tlb_invalidate(pde_t *pgdir, uintptr_t la);
struct Page *pgdir_alloc_page(pde_t *pgdir, uintptr_t la, uint32_t perm);
void unmap_range(pde_t *pgdir, uintptr_t start, uintptr_t end);
void exit_range(pde_t *pgdir, uintptr_t start, uintptr_t end);
int copy_range(pde_t *to, pde_t *from, uintptr_t start, uintptr_t end, bool share);
void print_pgdir(void);
/* *
* PADDR - takes a kernel virtual address (an address that points above KERNBASE),
* where the machine's maximum 256MB of physical memory is mapped and returns the
* corresponding physical address. It panics if you pass it a non-kernel virtual address.
* */
#define PADDR(kva) ({ \
uintptr_t __m_kva = (uintptr_t)(kva); \
if (__m_kva < KERNBASE) { \
panic("PADDR called with invalid kva %08lx", __m_kva); \
} \
__m_kva - KERNBASE; \
})
/* *
* KADDR - takes a physical address and returns the corresponding kernel virtual
* address. It panics if you pass an invalid physical address.
* */
#define KADDR(pa) ({ \
uintptr_t __m_pa = (pa); \
size_t __m_ppn = PPN(__m_pa); \
if (__m_ppn >= npage) { \
panic("KADDR called with invalid pa %08lx", __m_pa); \
} \
(void *) (__m_pa + KERNBASE); \
})
extern struct Page *pages;
extern size_t npage;
static inline ppn_t
page2ppn(struct Page *page) {
return page - pages;
}
static inline uintptr_t
page2pa(struct Page *page) {
return page2ppn(page) << PGSHIFT;
}
static inline struct Page *
pa2page(uintptr_t pa) {
if (PPN(pa) >= npage) {
panic("pa2page called with invalid pa");
}
return &pages[PPN(pa)];
}
static inline void *
page2kva(struct Page *page) {
return KADDR(page2pa(page));
}
static inline struct Page *
kva2page(void *kva) {
return pa2page(PADDR(kva));
}
static inline struct Page *
pte2page(pte_t pte) {
if (!(pte & PTE_P)) {
panic("pte2page called with invalid pte");
}
return pa2page(PTE_ADDR(pte));
}
static inline struct Page *
pde2page(pde_t pde) {
return pa2page(PDE_ADDR(pde));
}
static inline int
page_ref(struct Page *page) {
return page->ref;
}
static inline void
set_page_ref(struct Page *page, int val) {
page->ref = val;
}
static inline int
page_ref_inc(struct Page *page) {
page->ref += 1;
return page->ref;
}
static inline int
page_ref_dec(struct Page *page) {
page->ref -= 1;
return page->ref;
}
extern char bootstack[], bootstacktop[];
#endif /* !__KERN_MM_PMM_H__ */